The Wright functions as solutions of the time-fractional diffusion equation
نویسندگان
چکیده
منابع مشابه
The Wright functions as solutions of the time-fractional diffusion equation
We revisit the Cauchy problem for the time-fractional diffusion equation, which is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order b 2 ð0; 2 . By using the Fourier–Laplace transforms the fundamentals solutions (Green functions) are shown to be high transcendental functions of the Wright-type that can be interpreted...
متن کاملAnalytical solutions for the fractional Fisher's equation
In this paper, we consider the inhomogeneous time-fractional nonlinear Fisher equation with three known boundary conditions. We first apply a modified Homotopy perturbation method for translating the proposed problem to a set of linear problems. Then we use the separation variables method to solve obtained problems. In examples, we illustrate that by right choice of source term in the modified...
متن کاملRegularity of Solutions to a Time-Fractional Diffusion Equation
The paper proves estimates for the partial derivatives of the solution to a time-fractional diffusion equation, posed over a bounded spatial domain. Such estimates are needed for the analysis of effective numerical methods, particularly since the solution is less regular than in the well-known case of classical diffusion.
متن کاملSolutions to Time-Fractional Diffusion-Wave Equation in Cylindrical Coordinates
Nonaxisymmetric solutions to time-fractional diffusion-wave equation with a source term in cylindrical coordinates are obtained for an infinite medium. The solutions are found using the Laplace transform with respect to time t, the Hankel transform with respect to the radial coordinate r, the finite Fourier transform with respect to the angular coordinate φ, and the exponential Fourier transfor...
متن کاملAn Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation
Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics and Computation
سال: 2003
ISSN: 0096-3003
DOI: 10.1016/s0096-3003(02)00320-x